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We are concerned with the behaviour of a two-dimensional jet that issues from a
planar orifice, with a ‘top-hat’ profile. At the orifice the steady flow is modulated by a
time-harmonic fluctuation. A suitably defined Reynolds number is assumed to be large
throughout. At large streamwise distances from the orifice, the time-averaged flow
yields the classical, Bickley, jet with a suitable virtual origin. This decays algebraically
whilst, by contrast, the unsteady component decays exponentially with streamwise
distance. An asymptotic theory confirms the exponential decay and provides a good
agreement with the numerical solution.

1. Introduction
In this paper, we consider the flow in a two-dimensional jet issuing from between

plane boundaries a distance 2h apart. The onset flow, where the jet issues from the
orifice, comprises a steady uniform component U superimposed upon which is a
periodic fluctuation of amplitude εU and frequency ω. Of particular interest is the
nature of the downstream decay of the jet. A Reynolds number R = Uh/ν, where ν

is the kinematic viscosity, is assumed to be large so that the unsteady boundary-layer
equations result, characterized by the single parameter S = ωh2/ν.

In § 2, we present results from an integration of these equations for a particular
value of S, and various O(1) values of ε. The integration advances the solution in time
until a periodic solution emerges. In the absence of the unsteady component (ε =0),
the jet develops from its initial ‘top hat’ form to the self-similar solution (Schlichting
1933; Bickley 1937), as x → ∞, where x is the streamwise variable. In this solution,
the axial velocity decays algebraically as O(x−1/3) and the jet thickens as O(x2/3). For
values of ε �=0, we have found that the disturbance due to the modulation at x =0
decays much more rapidly, and the steady self-similar jet emerges.

In order to gain some understanding of this very rapid decay, we have, in § 3,
carried out a perturbation analysis for ε � 1. The O(1) leading term is the steady
jet, which evolves into the self-similar form. At O(ε), the fluctuating perturbation
satisfies a linear equation. An analysis of this for large x shows that the unsteady flow
domain divides into an outer region of thickness O(x2/3), as in the steady case, and
an inner region of thickness O(x1/3). Matching the inner and outer solutions leads
to an eigenvalue problem. The lowest eigenvalue, perhaps unexpectedly, predicts a
solution that grows exponentially at large distances downstream. This is clearly not
in accord with the results reported in § 2. The second eigenvalue predicts a physically
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and numerically acceptable exponentially decaying solution far downstream. This
exponential decay, whose rate of decay increases with S, may be compared with the
algebraic decay of the steady jet. Various aspects of the numerical solution for large x

are compared with the asymptotic two-layer perturbation solution and a satisfactory
agreement is recorded.

2. Governing equations and numerical solution
We are concerned with the flow of an incompressible viscous fluid, for which the

governing equations are

∂v′

∂t ′ − v′ ∧ (∇ ∧ v′) =
1

ρ
∇(p′ + 1

2
ρv′2) − ν∇ ∧ ∇ ∧ v′, ∇.v′ = 0. (2.1)

In these equations, t ′ is the time, v′ = (u′, v′) is the velocity, p′ is the pressure, ρ is the
density and ν is the kinematic viscosity of the fluid. A jet is assumed to emerge at
x ′ = 0, into fluid otherwise at rest, from the parallel planes y ′ = ±h, so that at x ′ = 0
the initial conditions are

u′ =

{
U (1 + ε cos ωt ′), |y ′| <h,

0, |y ′| > h,
(2.2)

where ω is the frequency of the fluctuation and U , ε are constants.
If we introduce dimensionless variables such that

x = νx ′/Uh2, y = y ′/h, t = ωt ′, u = u′/U, v = v′h/ν and p = p′/ρU 2,

then for Reynolds number R = Uh/ν 
 1, the pressure is uniform across the jet and
the x-component of (2.1) and the continuity equation, become

S
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

∂2u

∂y2
,

∂u

∂x
+

∂v

∂y
= 0, (2.3)

where S =ωh2/ν is the Stokes number. The initial condition (2.2) is now, at x =0,

u =

{
1 + ε cos t, |y| < 1,

0, |y| > 1.
(2.4)

The remaining boundary conditions for (2.3) require

v = ∂u/∂y =0 at y = 0, x > 0,

u → 0 as y → ∞, x > 0.

}
(2.5)

We have addressed, numerically, the equations (2.3) together with the onset
condition (2.4) and the boundary conditions (2.5). To enable this, we have used a fully
implicit second-order accurate marching procedure in both time t and the streamwise
direction x, using backward finite-difference formulae and standard second-order
accurate central differences for the transverse derivatives. Uniform grids in time and
the streamwise direction, δt = 2π/100, δx =0.01, are adopted, whilst a non-uniform
grid in the transverse direction has δy = 0.03 close to the axis of symmetry increasing
to δy = 0.8 at the outer edge of the computational domain ymax = 100.

To implement the numerical scheme, we require an initial solution over the whole
spatial domain 0 � x � 10, 0 � y � 100. This is achieved by setting ε = 0 in (2.4) to
determine what is essentially a steady-state solution consequent upon a steady uniform
flow from the orifice. In doing so, we accommodate the singular behaviour implied
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by (2.4) at the lips y = ±1 by writing the onset flow at x = 0 as

u0(y) =
1

2
(1 + ε cos t)

[
1 − tanh

(
y − 1

δ

)]
, δ =0.03.

With an initial solution in place, consider how this is now advanced in time. Suppose
the solution is known up to some time t = tn−1. The spatial integration commences
at x =0, and following a suitable quasi-linearization of the momentum equation in
(2.3), the following set of algebraic equations is to be solved

Aj (u
∗, v∗)u

∣∣n
i,j+1

+ Bj (u
∗, v∗)u

∣∣n
i,j

+ Cj (u
∗, v∗)u

∣∣n
i,j−1

= Dj

(
u
∣∣n
i−1,j

, un
i−2,j , u

n−1
i,j , un−2

i,j

)
,

(2.6)

with i =1, . . . , Nx and j = 1, . . . , Ny , where Nx =1000 and Ny = 500 are the number
of grid points in the x and y directions, respectively. The notation in (2.6) is such
that u|ni,j = u(xi, yj , tn), v|ni,j = v(xi, yj , tn) and (u∗, v∗) are the best available estimates
for the velocity components (u, v) at each grid point; so at each streamwise location
we have the initial estimate u∗

j = u|ni−1,j , v∗
j = v|ni−1,j . The solution to the tridiagonal

system (2.6), obtained using the Thomas algorithm, yields improved estimates of u and
(from (2.3b)) v. These values are used to update u∗ and v∗, and the iterative process

continues until convergence is achieved. This is defined to be when
∑Ny

j =1 |u∗
j −un

i,j | falls
below a prescribed tolerance. The results have been checked for grid independence
by comparison with results obtained with finer grids in sample calculations. The
temporal integration continues until the solution has settled to a time-periodic state.
The accuracy of the numerical results was tested by comparison with the integral
constraint obtained from (2.3):∫ ∞

0

<u2 > dy = 1 + 1
2
ε2, where < · > =

1

2π

∫ 2π

0

. dt. (2.7)

Numerical solutions have been obtained, in particular, with S = 2 for a range of
values of ε, 0 <ε � 0.4. In all cases, time dependence of the solutions, associated with
the modulation at x = 0, decays very rapidly in the axial direction and the steady
jet that emerges assumes the form of the steady, self-similar, two-dimensional jet
obtained analytically by Bickley (1937). This solution, where we introduce the stream
function ψ such that u = ∂ψ/∂y, v = −∂ψ/∂x, may be written as

ψb(x, y) =
{
9
(
1 + 1

2
ε2

)
(x + x0)

}1/3
f (η), η = 1

6

{
9
(
1 + 1

2
ε2)

}1/3
(x + x0)

−2/3y, (2.8)

where f (η) = tanh η and the integral constraint (2.7), which expresses constancy of
mean momentum flux, has been employed. The constant x0, which can be expected
to depend upon ε, fixes the position of the virtual origin of the Bickley solution.

To illustrate the rapid axial approach to a time-independent state, it is convenient
to write

u(x, y, t) =u0(x, y) + u1(x, y, t),

where |u1| � |u0| as x → ∞. With the anticipated periodic form of the time-dependent
part, we set

u1(x, y, t) =u11(x, y) cos t + u12(x, y) sin t =
(
u2

11 + u2
12

)1/2
cos(t + φ), (2.9)

where

u11 =
1

π

∫ 2π

0

u cos t dt, u12 =
1

π

∫ 2π

0

u sin t dt. (2.10)
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Figure 1. The normalized time-dependent centreline velocity u10 = {u(x, 0, tm) − u0(x, 0)}/ε
for the case S =2 with ε = 0.05 (broken line); ε =0.1 (solid line); ε = 0.2 (dot-dash line);
ε = 0.4 (dotted line).

In figure 1, we present, for the case S = 2 and various values of ε, the normalized
time-dependent centreline velocity u10 = {u(x, 0, t)−u0(x, 0)}/ε, at a time tm such that
cos(tm +φ) = 1. The rapid decay is evident; it is qualitatively similar for each value of
ε and shows a decay rate greater than the algebraic decay associated with the Bickley
jet. The results we have obtained for other values of S are qualitatively similar to
those shown in figure 1 with an enhanced rate of decay as S increases.

We next investigate the nature of this rapid decay by means of a perturbation
analysis for ε � 1.

3. Asymptotic theory
It is convenient to write the governing equations (2.3) in terms of the stream

function ψ as

S
∂u

∂t
+

∂(u, ψ)

∂(x, y)
=

∂2u

∂y2
, u =

∂ψ

∂y
. (3.1)

The onset conditions at x = 0 are as in (2.4) together with

ψ = ∂u/∂y = 0 at y =0, x > 0,

u → 0 as y → ∞, x > 0.

}
(3.2)

With the assumption that ε � 1, we expand ψ , u as

ψ =ψ0 + 1
2
ε(ψ1e

it + ψ̄1e
−it ) + O(ε2),

u = u0 + 1
2
ε(u1e

it + ū1e
−it ) + O(ε2).

}
(3.3)

Substitution into (3.1) then gives, at O(1),

∂(u0, ψ0)

∂(x, y)
=

∂2u0

∂y2
, u0 =

∂ψ0

∂y
, (3.4)

with, at x = 0,

u0 =

{
1, |y| < 1,

0, |y| > 1,
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together with

ψ0 = ∂u0/∂y = 0 at y =0, x > 0,

u0 → 0 as y → ∞, x > 0,

At O(ε),

iSu1 +
∂(u0, ψ1)

∂(x, y)
+

∂(u1, ψ0)

∂(x, y)
=

∂2u1

∂y2
, u1 =

∂ψ1

∂y
, (3.5)

with, at x = 0,

u1 =

{
1, |y| < 1,

0, |y| > 1,

together with

ψ1 = ∂u1/∂y =0, at y = 0, x > 0,

u1 → 0 as y → ∞, x > 0.

When x is sufficiently large for (2.8), with ε = 0, to be a valid approximation, the
O(ε) perturbation can be expressed as

ψ1 = {9(x + x0)}1/3F (ξ, η), (3.6)

where

ξ = 4
9
S{9(x + x0)}4/3, (3.7)

and from (3.5)

Fηηη + 2(f Fηη + 2f ′Fη + f ′′F ) + 8ξ (f ′′Fξ − f ′Fξη) − iξFη =0. (3.8)

The boundary conditions on F (ξ, η) are that

F =Fηη = 0 at η = 0,

and Fη → 0 as η → ∞.

}

Equation (3.8) can also be put in the form

Gηη − 8f ′ξGξ − iξFη = 0, G(ξ, η) = Fη + 2f F.

The equation for F (ξ, η) has an exact solution

F (ξ, η) = X(ξ ) − iY (ξ )f ′(η), (3.9)

and hence

G(ξ, η) = 2X(ξ )f (η),

provided that

Y (ξ ) = 8X′(ξ ) + 2ξ−1X(ξ ). (3.10)

This can be only an outer solution of the full problem, because F (ξ, η) in (3.9) is not
an odd function of η. It may be noted that, for fixed ξ , this outer solution makes

u1 = −
(

ξ

S

)1/2

iY (ξ )
∂u0

∂y
.

Some insight into the behaviour of X(ξ ) may be gained by integrating (3.8) to give

iF (ξ, ∞) = 16
d

dξ

∫ ∞

0

f ′′(η)F (ξ, η) dη.
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The form of the outer solution, from (3.9) and (3.10), is

F (ξ, η) = X(ξ ) − i{8X′(ξ ) + 2ξ−1X(ξ )}f ′(η),

and substitution of this into the above integral yields an equation for X. This, of
course, neglects any contribution to the integral from an inner solution, but that may
be expected to be small since f ′′ = F = 0 at η =0. The resulting equation for X(ξ ) is

X′′(ξ ) + 1
4
(i + ξ−1)X′(ξ ) −

(
1
64

+ 1
4
ξ−2

)
X(ξ ) = 0. (3.11)

Equation (3.11) has solutions of the form

X(ξ )∼A exp
{

− 1
8
iξ ± 1

4
(1 + i)ξ 1/2

}
ξ 1/8,

as ξ → ∞. As remarked, in obtaining this result the inner region has been neglected,
but it does motivate a structure of the outer solution in the form

X(ξ )∼A exp
(
λξ + μξ 1/2

)
ξk,

and it is plausible that λ= − 1
8
i.

Guided by this, we seek an inner solution in the form

F (ξ, η) = exp
(
λξ + μξ 1/2

)
ξk

{
f0(z) + ξ−1/2f1(z) + · · ·

}
,

where z is a suitable inner variable. Details of the construction of the inner solution
are given in the Appendix; here we present only an outline. It appears to be impossible
to match with the outer solution unless

λ= − 1
8
i,

and that the matching condition on f0(z) is then an eigenvalue problem for μ, with
the solution

μ =
(

1
4

− n
)√

i, n= 0, 1, 2, . . . .

The numerical solution indicates that F (ξ, η) decays exponentially as ξ → ∞, so we
assume that the case n= 0 is absent. The dominant solution is therefore that with

μ = − 3
4

√
i.

For each eigenvalue μ, the corresponding value of k comes from the equation for
f1(z): the case μ = − 3

4

√
i requires

k = − 3
4
.

Note that f1(z) contains an arbitrary multiple of f0(z), which has to be found from
the equation for f2(z).

The solution of the equations gives the centreline speed from

Fη(ξ, 0) = −4AE(ξ )(iξ )−1/2
{
1 + 3

16
(iξ )−1/2 + O(ξ−1)

}
, (3.12)

where

E(ξ ) = exp
{

− 1
8
iξ − 3

4
(iξ )1/2

}
,

and A is a complex constant. Matching with the outer solution yields

F (ξ, ∞) = X(ξ ) =
√

2πAE(ξ )(iξ )−1/4
{
1 + 39

16
(iξ )−1/2 + O(ξ−1)

}
(3.13)

and

iY (ξ ) =
√

2πAE(ξ )(iξ )−1/4
{
1 + 87

16
(iξ )−1/2 + O(ξ−1)

}
.
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Furthermore, it is perhaps worth noting that (3.12) shows the decay of the
perturbation centreline velocity to be exponential, unlike the algebraic decay of
the corresponding time-averaged velocity.

4. A comparison between the asymptotic and numerical results
Initially, we integrated the analogues of (3.4) and (3.5) for the velocity components

(u0, v0) and (u1, v1) by the numerical method used for (2.3). The time-independent part
(u0, v0) eventually develops into the self-similar form of Bickley ((2.8) with ε = 0) in
which, for example, the streamwise centreline speed decays algebraically, as O(x−1/3),
as x → ∞. Unsurprisingly, perhaps, the perturbation solution (u1, v1) does not decay,
but grows exponentially as x → ∞. This growing eigensolution is consistent with the
lowest eigenvalue μ0 = 1

4

√
i recorded in § 3. However, the solutions we have obtained

of the nonlinear problem (2.3) to (2.5) indicate that this eigensolution is spurious and
may be neglected.

Secured in the knowledge from the calculations described in § 2 that the time-
dependent element of the solution decays more rapidly than the time-independent
part, a comparison with the asymptotic solution of § 3 is appropriate. As for the
velocity component u(x, y, t) in (2.9), we write the stream function ψ as

ψ(x, y, t) =ψ0(x, y) + ψ1(x, y, t), (4.1)

Again, with the anticipated form of the time-dependent part, we set

ψ1(x, y, t) =ψ11(x, y) cos t + ψ12(x, y) sin t =
(
ψ2

11 + ψ2
12

)1/2
cos(t + θ), (4.2)

where

ψ11 =
1

π

∫ 2π

0

ψ cos t dt, ψ12 =
1

π

∫ 2π

0

ψ sin t dt. (4.3)

In order to make a meaningful comparison with the asymptotic solution, we require
a solution of the nonlinear problem for small ε, and we have chosen ε = 0.05. As
noted in § 2, the classical solution of Bickley (1937) emerges as x → ∞, with a virtual
origin at x = −x0(ε), as u0(x, y) ∼ 1

6
{9(1 + 1

2
ε2)}2/3(x + x0)

−1/3sech2η. The quantity x0

can therefore be estimated as x0 = limx → ∞[3(1 + 1
2
ε2)2{2u0(x, 0)}−3 − x] from which

we find, for ε = 0.05, x0 = 0.207.
In figures 2–4, we show the time-dependent centreline velocity and the stream

function at the edge of the jet. The rapid decay is evident and, furthermore, we see
that the decay rate increases as S increases, consistent with (3.7), (3.12) and (3.13).
To investigate further the relationship between the numerical results and the

asymptotic theory of § 3, first define a quantity R as

R =

(
ψ2

11(x, ymax) + ψ2
12(x, ymax)

u2
11(x, 0) + u2

12(x, 0)

)1/2

. (4.4)

In figure 4, we show RS−1/4(x+x0)
−1 as a function of x which, in all cases, approaches

a constant value. From the inner and outer solutions, as in (3.12) and (3.13), we see
that |ψ1(x, ∞, t)/u1(x, 0, t)|S−1/4(x + x0)

−1 → 3.07 as x → ∞, which is slightly higher
than the values recorded by the numerical calculations. Finally, in figure 6, we show
the phase differences (see (2.9) and (4.2)) between the outer and inner solutions θ − φ.
The asymptotic theory (see (3.12) and (3.13)) shows that as x → ∞, θ −φ → π/8, which
is slightly lower than the value predicted by the numerical calculations.
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Figure 2. (a) The normalized, time-dependent centreline velocity, u10 = {u(x, 0, t)−u0(x, 0)}/ε
and (b) the corresponding stream function at the edge of the jet, ψ1∞ = {ψ(x, ymax, t) −
ψ0(x, ymax}/ε, with S = 2 at a time t such that cos t = 1. In the numerical calculation ε = 0.05.
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Figure 3. Same as for figure 2 with S = 4.
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Figure 4. Same as for figure 2 with S =12.
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Figure 5. Quantity R(x + x0)
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4 , with R as in (4.4), for values of S = 12, 4 and 2.

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

θ – φ

x

 S = 12

 S = 2

 S = 4

Figure 6. Phase difference between u10 and ψ1∞ for S = 12, 4 and 2.

The small differences that have been noted in figures 5 and 6 between the asymptotic
analysis and the numerical calculations may be attributed to the fact that in the
analysis terms O(ε2) have not been considered.

5. Conclusions
In this paper, we have analysed the structure of a plane jet that is discharged

from between plane boundaries into an ambient atmosphere. The onset flow at the
orifice has a prescribed steady component upon which a time-dependent harmonic
fluctuation is superposed. Asymptotic analysis and numerical calculations, in which
marching in time and axial distance yields a time-periodic solution, show that the
time-dependent part of the solution decays exponentially with downstream axial
distance. By contrast, the time-averaged solution decays more slowly, developing into
the well-known Bickley (1937) jet that decays algebraically with axial distance.

M. S.-S. acknowledges the support of the Spanish MEC under projects # ENE2005-
08580-C02-01 and # ENE2005-09190-CO4-01 and the regional government of
Comunidad de Madrid under project S-505/ENE/0229 during the period in which
this work was carried out.
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Appendix. The inner expansion
The inner solution is sought in the form

F (ξ, η) = exp
(
λξ + μξ 1/2

)
ξk

{
f0(z) + ξ−1/2f1(z) + ξ−1f2(z) + · · ·

}
, (A 1)

where z is a suitable inner variable. The natural choice is

z = ξ 1/2η = S1/2y.

From (3.8), this choice leads to

f ′′′
0 − (8λ + i)f ′

0 = 0.

If λ �= − 1
8
i, then

f0(z) = A sin{(8λ + i)1/2z},
since f0(z) is an odd function and f1(z), f2(z), . . . consist of functions cos{(8λ+i)1/2z}
and sin{(8λ+ i)1/2z} multiplied by polynomials in z, it seems impossible to match this
expansion with the outer solution. If λ= − 1

8
i, then

f0(z) = Az,

and fn(z) is an odd polynomial of degree (2n + 1) in z. This indicates that the
appropriate inner variable is ξ−1/4z = ξ 1/4η which, in turn, implies that the thickness
of this inner region is O((x + x0)

1/3), whereas the thickness of the main jet region is
O((x + x0)

2/3).
It is easier to develop the inner solution in terms of f (η) rather than η and, to

avoid the repeated occurrence of
√

i, it is more convenient to work with the variables

s =(iξ )1/2, ζ = (iξ )1/2f 2(η).

In terms of these variables, (3.8) becomes

4(s − ζ )2ζFζζζ + 6(s − ζ )(s − 3ζ )Fζζ − (s3 + 6s − 2ζ )Fζ − 2F − 4s{(s − ζ )Fsζ + Fs} =0.

On differentiation

4(s − ζ )2ζFζζζζ + 10(s − ζ )(s − 3ζ )Fζζζ − (s3 + 30s − 38ζ )Fζζ − 4s(s − ζ )Fsζζ = 0.

Then if

Fζζ = exp(− 1
8
s2 − as − b log s)Φ(s, ζ ),

where a and b correspond to μ and k in (A1), Φ(s, ζ ) satisfies

4(s − ζ )2ζΦζζ + 10(s − ζ )(s − 3ζ )Φζ+

+{4as2 + (4b − 30)s − (s2 + 4as + 4b − 38)ζ}Φ − 4s(s − ζ )Φs = 0.

We now expand Φ(s, ζ ) as

Φ(s, ζ ) = φ0(ζ ) + s−1φ1(ζ ) + s−2φ2(ζ ) + · · · , (A 2)

where the condition that F (ξ, η) is an odd function of η implies that

φn(ζ ) = ζ −3/2 × power series in ζ.

The leading term of (A2) is given by

4ζφ′′
0 + 10φ′

0 + (4a − ζ )φ0 = 0, (A 3)

and the required solution is

φ0(ζ ) = Ae−1/2ζ ζ −3/2
1F1

(
−a − 1

4
; − 1

2
; ζ

)
,
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where A is a complex constant. As R(ζ ) → +∞, φ0(ζ ) is exponentially large unless the
series for the confluent hypergeometric function 1F1 terminates. In order to be able
to match, we therefore have an eigenvalue problem with the solution

a + 1
4
= 0, 1, 2, . . . .

The numerical solution of the original equations indicates that F (ξ, η) is
exponentially small as ξ → ∞, so we assume that the eigenvalue a = − 1

4
is absent. In

the following, we take

a = 3
4
,

since this is expected to be the dominant case, and therefore

φ0(ζ ) = Ae−1/2ζ ζ −3/2(1 + 2ζ ),

and similar calculations can be made with the other eigenvalues.
The equation for φ1(ζ ) is now

4ζφ′′
1 + 10φ′

1 + (3 − ζ )φ1 = 8ζ 2φ′′
0 + 40ζφ′

0 + (30 − 4b + 3ζ )φ0, (A 4)

and the substitution

φ1(ζ ) = Ae−1/2ζ ζ −3/2χ1(ζ )

leads to

4ζχ ′′
1 − (4ζ + 2)χ ′

1 + 4χ1 = −4b + (27 − 8b)ζ − 24ζ 2 + 4ζ 3.

Unless χ1(ζ ) is a polynomial, it becomes large as ζ → ∞ like ζ −1/2eζ and makes φ1(ζ )
exponentially great. In this way, we find that

b = 3
2

and

χ1(ζ ) = c1(1 + 2ζ ) + 3ζ + 15
4
ζ 2 − 1

2
ζ 3,

where c1 is an arbitrary constant, corresponding to the fact that φ0(ζ ) is a
complementary function of (A4).

The constant c1 is determined by the condition that φ2(ζ ) is not large at infinity.
The equation for φ2(ζ ), on making use of (A3) and (A4), is

4ζφ′′
2 + 10φ′

2 + (3 − ζ )φ2 = 20ζφ′
1 + (20 − 3ζ + 2ζ 2)φ1 + 20ζ 2φ′

0 + (16ζ − 3ζ 2 + 3ζ 3)φ0.

Then if

φ2(ζ ) = Ae−1/2ζ ζ −3/2χ2(ζ ),

we have, for χ2(ζ ),

4ζχ ′′
2 − (4ζ + 2)χ ′

2 + 4χ2 = c1(4ζ 3 − 24ζ 2 + 7ζ − 10) − ζ 5 + 20ζ 4 − 363
4

ζ 3 + 145
2

ζ 2 + 16ζ.

As with χ1(ζ ), χ2(ζ ) must be a polynomial and this leads to

c1 = 3
16

,

and so

χ1(ζ ) = 3
16

+ 27
8
ζ + 15

4
ζ 2 − 1

2
ζ 3.

Thus, from the dominant eigenvalue a = 3
4
, we have the inner expansion

F (ξ, η) = E(ξ )(iξ )−3/4
{
F0(ζ ) + (iξ )−1/2F1(ζ ) + · · ·

}
,
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where

E(ξ ) = exp
{

− 1
8
iξ − 3

4
(iξ )1/2

}
,

and

F ′′
n (ζ ) = φn(ζ ).

Since Fn(ζ ) = ζ 1/2 × power series in ζ ,

F0(ζ ) = A
{
2e−1/2ζ ζ 1/2 + (ζ − 3)

∫ ζ

0
t−1/2e−1/2t dt

}
,

F1(ζ ) = A
{
e−1/2ζ

(
111
8

ζ 1/2 − 2ζ 3/2
)

+
(

87
16

ζ − 117
16

) ∫ ζ

0
t−1/2e−1/2t dt

}
.

As ζ → 0,

F0(ζ ) = −4Aζ 1/2 + O
(
ζ 3/2

)
,

F1(ζ ) = − 3
4
Aζ 1/2 + O

(
ζ 3/2

)
,

and as ζ → ∞,

F0(ζ ) = A
√

2π(ζ − 3) + exp. small,

F1(ζ ) = A
√

2π
(

87
16

ζ − 117
16

)
+ exp. small.

From these results, it follows that

Fη(ξ, 0) = AE(ξ )(iξ )−1/2
{

−4 − 3
4
(iξ )−1/2 + O(ξ−1)

}
,

and as ζ → ∞

F (ξ, η) = A
√

2πE(ξ )(iξ )−3/4
{
ζ − 3 +

(
87
16

ζ − 117
16

)
(iξ )−1/2 + O(ξ−1)

}
,

so that in terms of f (η),

F (ξ, η) ∼ A
√

2πE(ξ )(iξ )−3/4
{
(iξ )1/2f 2(η) − 3 + 87

16
f 2(η) − 117

16
(iξ )−1/2 + · · ·

}
. (A 5)

Matching (A5) to

F (ξ, η) = X(ξ ) − iY (ξ )f ′(η) = X(ξ ) − iY (ξ ) + iY (ξ )f 2(η)

gives

X(ξ ) = A
√

2πE(ξ )(iξ )−1/4
{
1 + 39

16
(iξ )−1/2 + · · ·

}
,

iY (ξ ) = A
√

2πE(ξ )(iξ )−1/4
{
1 + 87

16
(iξ )−1/2 + · · ·

}
.
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